The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin
نویسندگان
چکیده
Most of the photoreceptors of the fly compound eye have high sensitivity in the ultraviolet (UV) as well as in the visible spectral range. This UV sensitivity arises from a photostable pigment that acts as a sensitizer for rhodopsin. Because the sensitizing pigment cannot be bleached, the classical determination of the photosensitivity spectrum from measurements of the difference spectrum of the pigment cannot be applied. We therefore used a new method to determine the photosensitivity spectra of rhodopsin and metarhodopsin in the UV spectral range. The method is based on the fact that the invertebrate visual pigment is a bistable one, in which rhodopsin and metarhodopsin are photointerconvertible. The pigment changes were measured by a fast electrical potential, called the M potential, which arises from activation of metarhodopsin. We first established the use of the M potential as a reliable measure of the visual pigment changes in the fly. We then calculated the photosensitivity spectrum of rhodopsin and metarhodopsin by using two kinds of experimentally measured spectra: the relaxation and the photoequilibrium spectra. The relaxation spectrum represents the wavelength dependence of the rate of approach of the pigment molecules to photoequilibrium. This spectrum is the weighted sum of the photosensitivity spectra of rhodopsin and metarhodopsin. The photoequilibrium spectrum measures the fraction of metarhodopsin (or rhodopsin) in photoequilibrium which is reached in the steady state for application of various wavelengths of light. By using this method we found that, although the photosensitivity spectra of rhodopsin and metarhodopsin are very different in the visible, they show strict coincidence in the UV region. This observation indicates that the photostable pigment acts as a sensitizer for both rhodopsin as well as metarhodopsin.
منابع مشابه
Photosensitivity spectrum of crayfish rhodopsin measured using fluorescence of metarhodopsin
Discrepancies exist among spectral measurements of sensitivity of crayfish photoreceptors, their absorption in situ, and the number and absorption spectra of crayfish photopigments that are extracted by digitonin solutions. We have determined the photosensitivity spectrum of crayfish rhodopsin in isolated rhabdoms using long wavelength fluorescence emission from crayfish metarhodopsin as an int...
متن کاملPhotosensitivity Spectrum of Crayfish
Discrepancies exist among spectral measurements of sensitivity of crayfish photoreceptors, their absorption in situ, and the number and absorption spectra of crayfish photopigments that are extracted by digitonin solutions. We have determined the photosensitivity spectrum ofcrayfish rhodopsin in isolated rhabdoms using long wavelength fluorescence emission from crayfish metarhodopsin as an intr...
متن کاملFast Electrical Potential from a Long-Lived, Long-Wavelength Photoproduct of Fly Visual Pigment
A rapid electrical potential, which we have named the M-potential, can be obtained from the Drosophila eye using a high energy flash stimulus. The potential can be elicited from the normal fly, but it is especially prominent in the mutant norp A(P12) (a phototransduction mutant), particularly if the eye color pigments are genetically removed from the eye. Several lines of evidence suggest that ...
متن کاملVisual acuity of fly photoreceptors in natural conditions--dependence on UV sensitizing pigment and light-controlling pupil.
The effect of the UV-absorbing sensitizing pigment of fly photoreceptors on absolute, spectral and angular sensitivity was investigated with a wave-optics model for the facet lens-rhabdomere system. When sky light was used as a UV-rich light source, one sensitizing pigment molecule per rhodopsin increased the photoreceptor absorption by 14-18% with respect to pure rhodopsin, whilst two sensitiz...
متن کاملModeling the resonance Raman spectrum of a metarhodopsin: implications for the color of visual pigments.
Resonance Raman spectra of an invertebrate rhodopsin are reported. The spectrum of squid acid metarhodopsin is compared with the spectra of model compounds of the retinylidene chromophore in the all-trans conformation. Correlations made between acid metarhodopsin and these crystalline model compounds with known x-ray structures indicate that the chromophore in this intermediate is an all-trans ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 73 شماره
صفحات -
تاریخ انتشار 1979